80 research outputs found

    Hybrid Whale-Mud-Ring Optimization for Precise Color Skin Cancer Image Segmentation

    Full text link
    Timely identification and treatment of rapidly progressing skin cancers can significantly contribute to the preservation of patients' health and well-being. Dermoscopy, a dependable and accessible tool, plays a pivotal role in the initial stages of skin cancer detection. Consequently, the effective processing of digital dermoscopy images holds significant importance in elevating the accuracy of skin cancer diagnoses. Multilevel thresholding is a key tool in medical imaging that extracts objects within the image to facilitate its analysis. In this paper, an enhanced version of the Mud Ring Algorithm hybridized with the Whale Optimization Algorithm, named WMRA, is proposed. The proposed approach utilizes bubble-net attack and mud ring strategy to overcome stagnation in local optima and obtain optimal thresholds. The experimental results show that WMRA is powerful against a cluster of recent methods in terms of fitness, Peak Signal to Noise Ratio (PSNR), and Mean Square Error (MSE)

    Deep Transfer Learning Applications in Intrusion Detection Systems: A Comprehensive Review

    Full text link
    Globally, the external Internet is increasingly being connected to the contemporary industrial control system. As a result, there is an immediate need to protect the network from several threats. The key infrastructure of industrial activity may be protected from harm by using an intrusion detection system (IDS), a preventive measure mechanism, to recognize new kinds of dangerous threats and hostile activities. The most recent artificial intelligence (AI) techniques used to create IDS in many kinds of industrial control networks are examined in this study, with a particular emphasis on IDS-based deep transfer learning (DTL). This latter can be seen as a type of information fusion that merge, and/or adapt knowledge from multiple domains to enhance the performance of the target task, particularly when the labeled data in the target domain is scarce. Publications issued after 2015 were taken into account. These selected publications were divided into three categories: DTL-only and IDS-only are involved in the introduction and background, and DTL-based IDS papers are involved in the core papers of this review. Researchers will be able to have a better grasp of the current state of DTL approaches used in IDS in many different types of networks by reading this review paper. Other useful information, such as the datasets used, the sort of DTL employed, the pre-trained network, IDS techniques, the evaluation metrics including accuracy/F-score and false alarm rate (FAR), and the improvement gained, were also covered. The algorithms, and methods used in several studies, or illustrate deeply and clearly the principle in any DTL-based IDS subcategory are presented to the reader

    On the Sensitivity of Deep Load Disaggregation to Adversarial Attacks

    Full text link
    Non-intrusive Load Monitoring (NILM) algorithms, commonly referred to as load disaggregation algorithms, are fundamental tools for effective energy management. Despite the success of deep models in load disaggregation, they face various challenges, particularly those pertaining to privacy and security. This paper investigates the sensitivity of prominent deep NILM baselines to adversarial attacks, which have proven to be a significant threat in domains such as computer vision and speech recognition. Adversarial attacks entail the introduction of imperceptible noise into the input data with the aim of misleading the neural network into generating erroneous outputs. We investigate the Fast Gradient Sign Method (FGSM), a well-known adversarial attack, to perturb the input sequences fed into two commonly employed CNN-based NILM baselines: the Sequence-to-Sequence (S2S) and Sequence-to-Point (S2P) models. Our findings provide compelling evidence for the vulnerability of these models, particularly the S2P model which exhibits an average decline of 20\% in the F1-score even with small amounts of noise. Such weakness has the potential to generate profound implications for energy management systems in residential and industrial sectors reliant on NILM models

    Appliance identification using a histogram post-processing of 2D local binary patterns for smart grid applications

    Full text link
    Identifying domestic appliances in the smart grid leads to a better power usage management and further helps in detecting appliance-level abnormalities. An efficient identification can be achieved only if a robust feature extraction scheme is developed with a high ability to discriminate between different appliances on the smart grid. Accordingly, we propose in this paper a novel method to extract electrical power signatures after transforming the power signal to 2D space, which has more encoding possibilities. Following, an improved local binary patterns (LBP) is proposed that relies on improving the discriminative ability of conventional LBP using a post-processing stage. A binarized eigenvalue map (BEVM) is extracted from the 2D power matrix and then used to post-process the generated LBP representation. Next, two histograms are constructed, namely up and down histograms, and are then concatenated to form the global histogram. A comprehensive performance evaluation is performed on two different datasets, namely the GREEND and WITHED, in which power data were collected at 1 Hz and 44000 Hz sampling rates, respectively. The obtained results revealed the superiority of the proposed LBP-BEVM based system in terms of the identification performance versus other 2D descriptors and existing identification frameworks.Comment: 8 pages, 10 figures and 5 table

    Artificial Intelligence based Anomaly Detection of Energy Consumption in Buildings: A Review, Current Trends and New Perspectives

    Get PDF
    Enormous amounts of data are being produced everyday by sub-meters and smart sensors installed in residential buildings. If leveraged properly, that data could assist end-users, energy producers and utility companies in detecting anomalous power consumption and understanding the causes of each anomaly. Therefore, anomaly detection could stop a minor problem becoming overwhelming. Moreover, it will aid in better decision-making to reduce wasted energy and promote sustainable and energy efficient behavior. In this regard, this paper is an in-depth review of existing anomaly detection frameworks for building energy consumption based on artificial intelligence. Specifically, an extensive survey is presented, in which a comprehensive taxonomy is introduced to classify existing algorithms based on different modules and parameters adopted, such as machine learning algorithms, feature extraction approaches, anomaly detection levels, computing platforms and application scenarios. To the best of the authors' knowledge, this is the first review article that discusses anomaly detection in building energy consumption. Moving forward, important findings along with domain-specific problems, difficulties and challenges that remain unresolved are thoroughly discussed, including the absence of: (i) precise definitions of anomalous power consumption, (ii) annotated datasets, (iii) unified metrics to assess the performance of existing solutions, (iv) platforms for reproducibility and (v) privacy-preservation. Following, insights about current research trends are discussed to widen the applications and effectiveness of the anomaly detection technology before deriving future directions attracting significant attention. This article serves as a comprehensive reference to understand the current technological progress in anomaly detection of energy consumption based on artificial intelligence.Comment: 11 Figures, 3 Table

    Novel Area-Efficient and Flexible Architectures for Optimal Ate Pairing on FPGA

    Full text link
    While FPGA is a suitable platform for implementing cryptographic algorithms, there are several challenges associated with implementing Optimal Ate pairing on FPGA, such as security, limited computing resources, and high power consumption. To overcome these issues, this study introduces three approaches that can execute the optimal Ate pairing on Barreto-Naehrig curves using Jacobean coordinates with the goal of reaching 128-bit security on the Genesys board. The first approach is a pure software implementation utilizing the MicroBlaze processor. The second involves a combination of software and hardware, with key operations in FpF_{p} and Fp2F_{p^{2}} being transformed into IP cores for the MicroBlaze. The third approach builds on the second by incorporating parallelism to improve the pairing process. The utilization of multiple MicroBlaze processors within a single system offers both versatility and parallelism to speed up pairing calculations. A variety of methods and parameters are used to optimize the pairing computation, including Montgomery modular multiplication, the Karatsuba method, Jacobean coordinates, the Complex squaring method, sparse multiplication, squaring in GÏ•6Fp12G_{\phi 6}F_{p^{12}}, and the addition chain method. The proposed systems are designed to efficiently utilize limited resources in restricted environments, while still completing tasks in a timely manner.Comment: 13 pages, 8 figures, and 5 table

    Automated liver tissues delineation based on machine learning techniques: A survey, current trends and future orientations

    Get PDF
    There is no denying how machine learning and computer vision have grown in the recent years. Their highest advantages lie within their automation, suitability, and ability to generate astounding results in a matter of seconds in a reproducible manner. This is aided by the ubiquitous advancements reached in the computing capabilities of current graphical processing units and the highly efficient implementation of such techniques. Hence, in this paper, we survey the key studies that are published between 2014 and 2020, showcasing the different machine learning algorithms researchers have used to segment the liver, hepatic-tumors, and hepatic-vasculature structures. We divide the surveyed studies based on the tissue of interest (hepatic-parenchyma, hepatic-tumors, or hepatic-vessels), highlighting the studies that tackle more than one task simultaneously. Additionally, the machine learning algorithms are classified as either supervised or unsupervised, and further partitioned if the amount of works that fall under a certain scheme is significant. Moreover, different datasets and challenges found in literature and websites, containing masks of the aforementioned tissues, are thoroughly discussed, highlighting the organizers original contributions, and those of other researchers. Also, the metrics that are used excessively in literature are mentioned in our review stressing their relevancy to the task at hand. Finally, critical challenges and future directions are emphasized for innovative researchers to tackle, exposing gaps that need addressing such as the scarcity of many studies on the vessels segmentation challenge, and why their absence needs to be dealt with in an accelerated manner.Comment: 41 pages, 4 figures, 13 equations, 1 table. A review paper on liver tissues segmentation based on automated ML-based technique

    Deep Transfer Learning for Automatic Speech Recognition: Towards Better Generalization

    Full text link
    Automatic speech recognition (ASR) has recently become an important challenge when using deep learning (DL). It requires large-scale training datasets and high computational and storage resources. Moreover, DL techniques and machine learning (ML) approaches in general, hypothesize that training and testing data come from the same domain, with the same input feature space and data distribution characteristics. This assumption, however, is not applicable in some real-world artificial intelligence (AI) applications. Moreover, there are situations where gathering real data is challenging, expensive, or rarely occurring, which can not meet the data requirements of DL models. deep transfer learning (DTL) has been introduced to overcome these issues, which helps develop high-performing models using real datasets that are small or slightly different but related to the training data. This paper presents a comprehensive survey of DTL-based ASR frameworks to shed light on the latest developments and helps academics and professionals understand current challenges. Specifically, after presenting the DTL background, a well-designed taxonomy is adopted to inform the state-of-the-art. A critical analysis is then conducted to identify the limitations and advantages of each framework. Moving on, a comparative study is introduced to highlight the current challenges before deriving opportunities for future research

    Cloud Energy Micro-Moment Data Classification: A Platform Study

    Full text link
    Energy efficiency is a crucial factor in the well-being of our planet. In parallel, Machine Learning (ML) plays an instrumental role in automating our lives and creating convenient workflows for enhancing behavior. So, analyzing energy behavior can help understand weak points and lay the path towards better interventions. Moving towards higher performance, cloud platforms can assist researchers in conducting classification trials that need high computational power. Under the larger umbrella of the Consumer Engagement Towards Energy Saving Behavior by means of Exploiting Micro Moments and Mobile Recommendation Systems (EM)3 framework, we aim to influence consumers behavioral change via improving their power consumption consciousness. In this paper, common cloud artificial intelligence platforms are benchmarked and compared for micro-moment classification. The Amazon Web Services, Google Cloud Platform, Google Colab, and Microsoft Azure Machine Learning are employed on simulated and real energy consumption datasets. The KNN, DNN, and SVM classifiers have been employed. Superb performance has been observed in the selected cloud platforms, showing relatively close performance. Yet, the nature of some algorithms limits the training performance.Comment: This paper has been accepted in IEEE RTDPCC 2020: International Symposium on Real-time Data Processing for Cloud Computin

    Deep and transfer learning for building occupancy detection: A review and comparative analysis

    Get PDF
    The building internet of things (BIoT) is quite a promising concept for curtailing energy consumption, reducing costs, and promoting building transformation. Besides, integrating artificial intelligence (AI) into the BIoT is essential for data analysis and intelligent decision-making. Thus, data-driven approaches to infer occupancy patterns usage are gaining growing interest in BIoT applications. Typically, analyzing big occupancy data gathered by BIoT networks helps significantly identify the causes of wasted energy and recommend corrective actions. Within this context, building occupancy data aids in the improvement of the efficacy of energy management systems, allowing the reduction of energy consumption while maintaining occupant comfort. Occupancy data might be collected using a variety of devices. Among those devices are optical/thermal cameras, smart meters, environmental sensors such as carbon dioxide (CO2), and passive infrared (PIR). Even though the latter methods are less precise, they have generated considerable attention owing to their inexpensive cost and low invasive nature. This article provides an in-depth survey of the strategies used to analyze sensor data and determine occupancy. The article's primary emphasis is on reviewing deep learning (DL), and transfer learning (TL) approaches for occupancy detection. This work investigates occupancy detection methods to develop an efficient system for processing sensor data while providing accurate occupancy information. Moreover, the paper conducted a comparative study of the readily available algorithms for occupancy detection to determine the optimal method in regards to training time and testing accuracy. The main concerns affecting the current occupancy detection system in terms of privacy and precision were thoroughly discussed. For occupancy detection, several directions were provided to avoid or reduce privacy problems by employing forthcoming technologies such as edge devices, Federated learning, and Blockchain-based IoT. 2022 The AuthorsThis paper was made possible by the Graduate Assistant-ship (GA) program provided from Qatar University (QU). The statements made herein are solely the responsibility of the authors. Open Access funding provided by the Qatar National Library.Scopu
    • …
    corecore